
WIP: Emulation Framework for Byzantine Fault-Tolerant
Protocols

Bastian Kupka1, Tim Strutzenberger1, Simon Egger1, and Christian Becker1

1 Introduction

Byzantine faults capture arbitrary system failures. Nodes may crash, messages may be
delayed and corrupted, or nodes may even send malicious messages to the remaining
honest processes in the system. This makes Byzantine Fault Tolerance (BFT) essential for
building resilient distributed systems like distributed databases [Va08] and for designing
system-critical protocols like clock synchronization [DW04].

In this work, we present an in progress network emulator that aims towards a platform
for testing (both generic and protocol-specific) fault-tolerance models for a wide range of
network protocols. Our emulator is built upon Linux network namespaces and utilizes the
NetEm queueing discipline [Ne]. This provides a generic method (with minimal required
changes to the source code) to evaluate resilience against asymmetric delays, packet delay
variations, packet loss, and packet corruption. We are currently working on extending the
emulator to support black- and grey-box fuzzing techniques, along with a simple interface
to aggregate and evaluate the test results.

2 Related Work and Problem Statement

Analyzing Byzantine fault tolerance can be a highly complex and elaborate task that involves
rigorous formal analysis or formal specification languages like TLA+ [La99]. Replacing
such formal methods is not one of our design goals [Di72]; Instead, we aim for an emulation
platform for detecting generic and protocol-specific faults in a wide range of existing network
protocol implementations, with minimal required changes to their source code.

Tools like Mininet [LHM10] or Jepsen [Je] are more closely related to this work. Mininet
enables a simple emulation of networks that is often used for Software Defined Network-
ing (SDN). Jepsen provides a framework to test safety and liveness guarantees of distributed
systems (e.g., MySQL, Redis, Zookeeper) in a real deployment. In contrast, our emulation
framework aims to combine the flexibility of Mininet network deployments with the ability
of Jepsen to test safety and liveness guarantees.

1 University of Stuttgart, Institute for Parallel and Distributed Systems, Germany,
st177153@stud.uni-stuttgart.de; st172242@stud.uni-stuttgart.de; simon.egger@ipvs.uni-stuttgart.de;
christian.becker@ipvs.uni-stuttgart.de

mailto:st177153@stud.uni-stuttgart.de
mailto:st172242@stud.uni-stuttgart.de
mailto:simon.egger@ipvs.uni-stuttgart.de
mailto:christian.becker@ipvs.uni-stuttgart.de


Fig. 1: Steps using our network emulator

3 Network Emulator Design

An overview of the individual steps is shown in Fig. 1. In Step A, the user configures test
cases for a given network protocol implementation, i.e., in the form of an executable binary.
By using Linux network namespaces to build the networks (Step B), we allow different
processes to communicate via Linux sockets (e.g., UPD, TCP, or raw sockets). In Step C,
each test case is run one by one. We support two complementary categories of fault models
that can be configured by the test case: First, we expose the capabilities of the NetEm
queueing discipline, e.g., manipulated packet delays, packet loss, or packet corruption.
Second, we support a centralized controller (attacker) that has a global view of the network
and has full control over all malicious processes. The controller can thereby start a generic
fuzzing campaign or a protocol-specific attack. After each run, the logs of all processes are
analyzed to check if any of the user-provided liveness or safety properties are violated.

Acknowledgment

This work was supported by the European Commission through the H2020 project DETER-
MINISTIC6G (Grant Agreement no. 101096504).

Bibliography
[Di72] Dijkstra, Edsger W: The humble programmer. Communications of the ACM, 15(10):859–

866, 1972.
[DW04] Dolev, Shlomi; Welch, Jennifer L.: Self-stabilizing clock synchronization in the presence

of Byzantine faults. J. ACM, 51(5):780–799, September 2004.
[Je] Jepsen. https://jepsen.io/, Accessed: 2025-01-31.
[La99] Lamport, Leslie: Specifying concurrent systems with TLA+. Calculational System Design,

pp. 183–247, 1999.
[LHM10] Lantz, Bob; Heller, Brandon; McKeown, Nick: A network in a laptop: rapid prototyping

for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks. pp. 1–6, 2010.

[Ne] NetEm – Network Emulator. https://man7.org/linux/man-pages/man8/tc-netem.8.html,
Accessed: 2025-01-31.

[Va08] Vandiver, Benjamin Mead: Detecting and tolerating byzantine faults in database systems.
PhD thesis, Massachusetts Institute of Technology, 2008.

https://jepsen.io/
https://man7.org/linux/man-pages/man8/tc-netem.8.html

